Kafka面试题
kafka为什么很快?
顺序写入日志
追加数据到日志文件尾部,顺序IO
零拷贝 mmap
即便是顺序写入硬盘,硬盘的访问速度还是不可能追上内存。所以Kafka的数据并不是实时的写入硬盘,它充分利用了现代操作系统 分页存储 来利用内存提高I/O效率。
Memory Mapped Files(后面简称mmap)也被翻译成 内存映射文件 ,在64位操作系统中一般可以表示20G的数据文件,它的工作原理是直接利用操作系统的Page来实现文件到物理内存的直接映射。完成映射之后你对物理内存的操作会被同步到硬盘上(操作系统在适当的时候)。
通过mmap,进程像读写硬盘一样读写内存(当然是虚拟机内存),也不必关心内存的大小有虚拟内存为我们兜底。
使用这种方式可以获取很大的I/O提升, 省去了用户空间到内核空间 复制的开销(调用文件的read会把数据先放到内核空间的内存中,然后再复制到用户空间的内存中。)也有一个很明显的缺陷——不可靠, 写到mmap中的数据并没有被真正的写到硬盘,操作系统会在程序主动调用flush的时候才把数据真正的写到硬盘。 Kafka提供了一个参数——producer.type来控制是不是主动flush,如果Kafka写入到mmap之后就立即flush然后再返回Producer叫 同步 (sync);写入mmap之后立即返回Producer不调用flush叫 异步 (async)。
在内核版本2.1中,引入了sendfile系统调用,以简化网络上和两个本地文件之间的数据传输。 sendfile的引入不仅减少了数据复制,还减少了上下文切换。
sendfile(socket, file, len);
,运行流程如下:
- sendfile系统调用,文件数据被copy至内核缓冲区
- 再从内核缓冲区copy至内核中socket相关的缓冲区
- 最后再socket相关的缓冲区copy到协议引擎
相较传统read/write方式,2.1版本内核引进的sendfile已经减少了内核缓冲区到user缓冲区,再由user缓冲区到socket相关缓冲区的文件copy,而在内核版本2.4之后,文件描述符结果被改变,sendfile实现了更简单的方式,再次减少了一次copy操作。
在apache,nginx,lighttpd等web服务器当中,都有一项sendfile相关的配置,使用sendfile可以大幅提升文件传输性能。
Kafka把所有的消息都存放在一个一个的文件中,当消费者需要数据的时候Kafka直接把文件发送给消费者,配合mmap作为文件读写方式,直接把它传给sendfile。
预读数据/批处理(读一块然后处理)
日志分段(有类似跳表索引)
数据压缩
当启用压缩时,对批处理的影响特别明显,因为随着数据大小的增加,压缩通常会变得更有效
特别是在使用基于文本的格式时,比如 JSON,压缩的效果会非常明显,压缩比通常在5x
到7x
之间
此外,记录的批处理主要作为一个客户端操作,负载在传递的过程中,不仅对网络带宽有积极影响,而且对服务端的磁盘 I/O 利用率也有积极影响
kafka使用page cache
~ free -m
total used free shared buffers cached
Mem: 128956 96440 32515 0 5368 39900
-/+ buffers/cache: 51172 77784
Swap: 16002 0 16001
page cache用于缓存文件的页数据,buffer cache用于缓存块设备(如磁盘)的块数据。页是逻辑上的概念,因此page cache是与文件系统同级的;块是物理上的概念,因此buffer cache是与块设备驱动程序同级的。
producer生产消息时,会使用pwrite()系统调用【对应到Java NIO中是FileChannel.write() API】按偏移量写入数据,并且都会先写入page cache里。consumer消费消息时,会使用sendfile()系统调用【对应FileChannel.transferTo() API】,零拷贝地将数据从page cache传输到broker的Socket buffer,再通过网络传输。
同时,page cache中的数据会随着内核中flusher线程的调度以及对sync()/fsync()的调用写回到磁盘,就算进程崩溃,也不用担心数据丢失。另外,如果consumer要消费的消息不在page cache里,才会去磁盘读取,并且会顺便预读出一些相邻的块放入page cache,以方便下一次读取。
如果Kafka producer的生产速率与consumer的消费速率相差不大,那么就能几乎只靠对broker page cache的读写完成整个生产-消费过程,磁盘访问非常少。这个结论俗称为"读写空中接力"。并且Kafka持久化消息到各个topic的partition文件时,是只追加的顺序写,充分利用了磁盘顺序访问快的特性,效率高
作者:LittleMagic 链接:https://www.jianshu.com/p/92f33aa0ff52 来源:简书 著作权归作者所有。商业转载请联系作者获得授权,非商业转载请注明出处。
消费者提交消费位移时提交的是当前消费到的最新消息的offset还是offset+1?
offset+1
Kafka中是怎么体现消息顺序性的?如何保证数据的一致性?
每个分区内,每条消息都有一个offset,故只能保证分区内有序
HW,LEO维护
副本为3,副本0位leader,副本1和2位follower,在ISR列表里面副本0已经写入了message4,但是consumer只能读取message2,这是因为所有副本都同步了message2,只有High water mark以上的message才能被consumer读取,而High water mark取决于ISR列表里偏移量最小的分区,对应上图中的副本2
所以在message还没有被follower同步完成时会被认为是"不安全的",如果consumer读取了副本0中的message4,这时候leader挂了,选举了副本1为新的leader,别的消费者去消费的时候就没有message4,就会造成不同的consumer消费的数据不一致,破坏了数据的一致性。
在引入了High water mark机制后,会导致broker之间的消息复制因为某些原因变慢,消息到达消费者的时间也会延长(需要等消息复制完了才能消费),延迟的时间可以通过参数来设置:replica.lag.time.max.ms(它指定了副本在复制消息时可被允许的最大延迟时间)
如何保证数据不会丢失或者重复消费的情况?做过哪些预防措施,增么解决以上问题的
发送:
- 同步发送数据
- ACK = -1(all)
消费:(再平衡)
- 自己维护offset,避免重复消费(低级API)
Topic 分区副本, 可靠性保证?
保证单个副本中的顺序性
Kafka 的分区多副本架构是 Kafka 可靠性保证的核心,把消息写入多个副本可以使 Kafka 在发生崩溃时仍能保证消息的持久性。
- 同步复制: 只有所有的follower把数据拿过去后才commit,一致性好,可用性不高。
- 异步复制: 只要leader拿到数据立即commit,等follower慢慢去复制,可用性高,立即返回,一致性差一些。 Commit:是指leader告诉客户端,这条数据写成功了。kafka尽量保证commit后立即leader挂掉,其他flower都有该条数据。
kafka不是完全同步,也不是完全异步,是一种ISR机制:
- leader会维护一个与其基本保持同步的Replica列表,该列表称为ISR(in-sync Replica),每个Partition都会有一个ISR,而且是由leader动态维护
- 如果一个flower比一个leader落后太多,或者超过一定时间未发起数据复制请求,则leader将其重ISR中移除
- 当ISR中所有Replica都向Leader发送ACK时,leader才commit
kafka重复消费的根本原因就是"数据消费了,但是offset没更新"!而我们要探究一般什么情况下会导致offset没更新?
- 原因1:强行kill线程,导致消费后的数据,offset没有提交(消费系统宕机、重启等)
- 原因2:设置offset为自动提交,关闭kafka时,如果在close之前,调用 consumer.unsubscribe() 则有可能部分offset没提交,下次重启会重复消费
- 原因3:(重复消费最常见的原因):消费后的数据,当offset还没有提交时,partition就断开连接。比如,通常会遇到消费的数据,处理很耗时,导致超过了Kafka的session timeout时间(0.10.x版本默认是30秒),那么就会re-blance重平衡,此时有一定几率offset没提交,会导致重平衡后重复消费
- 原因4:当消费者重新分配partition的时候,可能出现从头开始消费的情况,导致重发问题。
- 原因5:当消费者消费的速度很慢的时候,可能在一个session周期内还未完成,导致心跳机制检测报告出问题。
- 原因6:并发很大,可能在规定的时间(session.time.out默认30s)内没有消费完,就会可能导致rebalance重平衡,导致一部分offset自动提交失败,然后重平衡后重复消费
为了避免磁盘被占满,kafka会周期性的删除陈旧的消息,删除策略是什么?
- 一种是根据消息保留的时间
- 一种是根据topic存储的数据大小
kafka集群多Topic性能下降
参考:Kafka vs RocketMQ——多Topic对性能稳定性的影响-转自阿里中间件
死信队列(Dead-Letter Queue)
当一条消息初次消费失败,消息队列 MQ 会自动进行消息重试;达到最大重试次数后,若消费依然失败,则表明消费者在正常情况下无法正确地消费该消息,此时,消息队列 MQ 不会立刻将消息丢弃,而是将其发送到该消费者对应的特殊队列中,这种正常情况下无法被消费的消息称为死信消息(Dead-Letter Message),存储死信消息的特殊队列称为死信队列(Dead-Letter Queue)
与此对应的还有一个“回退队列”的概念,试想如果消费者在消费时发生了异常,那么就不会对这一次消费进行确认(Ack),进而发生回滚消息的操作之后消息始终会放在队列的顶部,然后不断被处理和回滚,导致队列陷入死循环。为了解决这个问题,可以为每个队列设置一个回退队列,它和死信队列都是为异常的处理提供的一种机制保障。实际情况下,回退队列的角色可以由死信队列和重试队列来扮演
重试队列其实可以看成是一种回退队列,具体指消费端消费消息失败时,为防止消息无故丢失而重新将消息回滚到Broker中。与回退队列不同的是重试队列一般分成多个重试等级,每个重试等级一般也会设置重新投递延时,重试次数越多投递延时就越大
eg: 消息第一次消费失败入重试队列Q1,Q1的重新投递延迟为5s,在5s过后重新投递该消息;如果消息再次消费失败则入重试队列Q2,Q2的重新投递延迟为10s,在10s过后再次投递该消息。以此类推,重试越多次重新投递的时间就越久,为此需要设置一个上限,超过投递次数就入死信队列。重试队列与延迟队列有相同的地方,都是需要设置延迟级别,它们彼此的区别是:延迟队列动作由内部触发,重试队列动作由外部消费端触发;延迟队列作用一次,而重试队列的作用范围会向后传递
注意:Kafka不支持重试机制也就不支持消息重试,也不支持死信队列,因此使用kafka做消息队列时,如果遇到了消息在业务处理时出现异常的场景时,需要额外实现消息重试的功能。
消息中间件对比(旧)
2.数据传输的事物定义有哪三种?
数据传输的事务定义通常有以下三种级别:
- 至多一次: 消息不会被重复发送,最多被传输一次,但也有可能一次不传输
- 最少一次: 消息不会被漏发送,最少被传输一次,但也有可能被重复传输.
- 精确的一次(Exactly once): 不会漏传输也不会重复传输,每个消息都传输被一次而且仅仅被传输一次,这是大家所期望的